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It is well known that the Euclidean algorithm or its equivalent, continued fractions, 
can be used to find the error locator polynomial and the error evaluator polynomial in 
Berlekamp ’s key equation needed to decode a Reed-Solomon (RS)  code. In this article, a 
simplified procedure is developed and proved. to correct erasures as well as errors by 
replacing the initial condition of the Euclidean algorithm by the erasure locator polyno- 
mial and the Forney syndrome polynomial. By this means, the errata locator polynomial 
and the errata evaluator polynomial can be obtained, simultaneously and simply, by the 
Euclidean algorithm only. With this improved technique the complexity of  time-domain 
RS decoders for correcting both errors and erasures is reduced substantially from previous 
approaches. As a consequence, decoders for correcting both errors and erasures of RS 
codes can be made more modular, regular, simple, and naturally suitable for both VLSI 
and software implementation, A n  example illustrating this modified decoding procedure 
is given for a ( I  5, 9)  RS code. 

1. Introduction 
The Euclidean algorithm for solving the key equation for 

decoding both BCH and Goppa type codes was developed first 
by Sugiyaina el al. [ l ]  . Forney [ 2 ]  defined an errata locator 
polynomial using what are now called Forney syndromes to  
correct both errors and erasures. Blahut [3, p. 2581 showed 
that the errata locator polynomial can be computed directly 
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by initializing Berlekamp’s algorithm with the erasure locator 
polynomial. 

Recently, Eastman’ showed that the errata evaluator poly- 
nomial can be computed directly by initializing Berlekamp’s 
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algorithm with the Forney syndrome polynomial. A proof of 
this new simplified decoding procedure is given in the present 
article. By this technique it is possible to compute the errata 
locator polynomial and the errata evaluator polynomial 
simultaneously from the Euclidean algorithm. It uses both the 
erasure locator polynomial and the Forney syndrome poly- 
nomial as initial conditions of the Euclidean algorithm. 

This new Reed-Solomon (RS) decoder can be realized by a 
simplified pipeline architecture. An efficient time domain 
decoder can be developed for correcting both errors and era- 
sures of RS codes. Such a decoding technique can be faster 
and simpler than previous methods [4]  . 

II. The Time Domain Decoder for RS Codes 
An algorithm is developed in [4] for time domain decod- 

ing RS codes to correct both errors and erasures by the use of 
continued fractions or its equivalent, the Euclidean algorithm. 
This algorithm is a modification of the Forney-Berlekamp 
method [ 2 , 5 ] .  The block diagram of such a decoding algo- 
rithm for a (255,223) RS code over CF(28) is depicted in Fig. 
1. In this algorithm, the continued fraction algorithm is used 
to find the errata locator polynomial by replacing its initial 
condition by the erasure locator polynomial. The disadvantage 
of this algorithm is that after the errata locator polynomial 
~ ( x )  is obtained, by continued fractions, a polynomial multi- 
plication is still needed to compute the errata evaluator 
polynomial A ( x )  = lS(x)  ~(x)J'from the known errata locator 
polynomial and the syndrome polynomial S(x), where Lxl 
denotes the principal part of x.  

In this section, the above-mentioned algorithm is modified 
to correct both errors and erasures in the time domain decod- 
ing of RS codes by a new use of the Euclidean algorithm. In 
this new algorithm, depicted in Fig. 2, the Euclidean algorithm 
is used to solve the Berlekamp-Forney key equation for the 
errata locator polynomial and the errata evaluator polynomial 
directly and simultaneously. The advantage of this algorithm 
over previous methods [4]  is that the separate computation 
of the errata evaluator polynomial, usually needed as in [ 4 ] ,  
can be avoided. This new decoding algorithm is highly suitable 
to both VLS'I and software implementation. 

First, let GF(2m) be a finite field of 2m elements. Also, let 
N = 2'" - 1 be the length of the ( N , Z )  RS code over GF(2"') 
with minimum distance d,  where Z = N - (d - 1)  denotes the 
number of m-bit message symbols and d - 1 denotes the num- 
ber of parity symbols such that d - 1 is either an even or an 
odd integer. 
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Define the following five vectors: 

c = (co, c ~ ,  . . . , c ~ - ~  ), code vector 

r = (ro, rl , . . . , r N - l ) ,  received vector 

e = (eo, e l ,  . . . , e N - l ) ,  error vector 

u = (uo, ul,. . . , u ~ - ~ ) ,  erasure vector 

u = (u0, ul, . . . , u ~ - ~  ), errata vector 
- 2  - 

These vectors are related by z= e t u and r = c t u t e. 

Suppose that t errors and v erasures occur in the received 
vector r and assume that v t 2r sfd - 1. Next let cr be a primi- 
tive element in GF(2m). Then y = ai is also a primitive ele- 
ment in GF(2m),  where (i, N )  = 1. 

To minimize the complexity of an RS encoder, it is desir- 
able that the generator polynomial be symmetric. If y is a 
root of the code's generator polynomial, it is shown [6]  that 
the generator polynomial g(x) is symmetric, if and only if, 

where go = gd-l = I and b satisfies the equality 2b t d - 2 = 
2m - 1 .  

The syndromes of the code are given by 

for 1 < k Gd-1 (2) 

where Xi is either the jth erasure or error location, and Yj is 
either the jth erasure or error magnitude. Define the sets, 
A = {X i  I Xi  is an erasure location} and h = {Xi  IXi is an error 
location}. Also, it is not difficult to show, see [ 5 ] ,  that 

d-1 

k =  1 
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Following [4] define four different polynomials in terms 
of sets A and X as follows: 

The erasure locator: 

or 

From (5b) one obtains the congruence relation 

S(x )  ~ ( x )  S A  ( x )  mod xd-' (6a) V 

= ( - 1 ) j  A jx i  
j = O  Now define the set of formal power series 

where A. = 1. 
F = c aix"-i I ai E GF(2'"), and n is an integer [ -  i=O The error locator: 

Since ~ ( x )  in (6a) is a polynomial in x with the leading coeffi- 
cient not equal to zero, it is not difficult to show that the 
inverse element 7-l ( x )  always exists in the set of formal power 
series. Thus, (6a) can be solved for S(x )  to yield 

r 

j=O 

= c (-1) h j X j  

where = 1. It is well known, e.g., see [5], that the maximum number of 
errors in an RS code which can be corrected is Ld - 1 - v)/2] 
where LxJ denotes the greatest integer less than or equal to x ,  
i.e., the principal part of x .  Now define a generalization of the 
Forney syndrome polynomial. 

The errata locator: 

Definition 1. The Forney syndrome polynomial is defined 
by v+r  

= ( - l ) j  TjX'  
T (x )  S ( x )  A (x )  mod xd-' ( 7 )  j=O 

By ( 7 )  and the key equation in (6b), A ( x )  is 
where r0 = 1 .  

A ( x )  E T(x )  h (x)  mod xd-' (sa) The errata evaluator: 

where 
V + t  

A ( x )  = y,3! (n(1 -xi.)) 
j = 1  i Z j  

deg {h(x)}  < Ld - 1 - v ) /2]  

and 
In terms of the polynomials defined above, ( 3 )  becomes 

Using a technique similar to that used for the proof of 
Theorem 7.7.3 in [3],  one can prove an important theorem 
that the errata evaluator polynomial A ( x )  and the errata 
locator polynomial ~ ( x )  can be obtained simultaneously and 
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It follows from (loa) that the determinant of Ns(x) is 
(-1)s. Thus, the inverse ofN, (x )  is given by 

simply from the known T(x), defined above, and the new key 
equation in (8). This algorithm takes into account both errors 
and erasures. 

Theorem 7.7.1 in [3] can be used to solve for A ( x )  and 
A(x) in (8). This theorem is the classical Euclidean algorithm 
for polynomials in matrix form. It is restated in terms of the 
polynomials and notation of the present article as follows: 

Theorem 1: Given the two polynomials xd-l and T(x)  in 
(7), where deg {xd-l } > deg { T(x)}. Let M, ( x )  = xd-l and 
R,(x) = T(x). Also, let Ns(x) be the 2 X 2 matrix equation 
which satisfies 

From (loa), D,(x) satisfies the recursive equation 

for s = 1 , 2 ,  . . . , where the initial conditions are D-, ( x )  = 0 
and Do (x )  = 1. Also from (Sc), one obtains the equations 0 11 

NsW = 

where 

Finally, let 
Thus, from (12a) and (12b), the recursive formula for Rs(x) is 

for s = 1 , 2 ,  . . . , where the initial conditions are R-, ( x )  = 
xd-l and R,  ( x )  = T(x). 

A substitution of ( loa)  into (9c) yields 
Then, for s = r ,  Ms(x) satisfies 

Mr(x) = cGCD [xd- l ,  T(x)] 

where c is a scalar, and Rr(x) = 0. 

Thus, from (1 3), one obtains Proof: See [3, p. 1941. 

Rs ( x )  T(x) Ds ( x )  mod x d-l  (14) 
By Theorem 1 one observes that 

for s = 1 , 2 ,  . . . , where the recursive formulas for D,(x) and 
Rs(x) are given in (1 1) and (12d), respectively. 

Equation (14) is the form of Eq. @a), which is used to 
solve for both A (x )  and X(x). To solve for A (x )  and A(x), one 
needs to find by (8b) a unique value s = s: such that 

0 1 

where 

deg {D,,(x)} Gl(d  - 1 - v)/2j 
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Since by  (12a) for s = s', M,c(x) = R,l-, ( x )  and deg {Xd-l} = 
d - 1, then (19b) becomes 

and 

deg {R, , (x)}  < [((d - 1 - v)/2) - 11 =L(v t d - 3)/2] 

in (14). Since deg { R - ,  ( x ) }  = d - 1. and deg {R,(x)}  is strictly 
decreasing with an increase in s, there always exists a unique 
value s' such that 

By (15a), deg D,, ( x )  in (20a) is upper bounded by the follow- 
ing inequality: 

deg {D, , (x)}  dd - 1 - pt;-'l - =p-;-lj 
and 

By (15b) and (20b), the Euclidean algorithm has the follow- 
ing stop conditions: 

where rx1 denotes the least integer greater than or equal t o  x .  

Since deg {D, , (x)}  is increasing with an increase in s ,  
then one needs t o  show also that and 

To prove (16), it follows from (13) that Thus, also by (1 sa)  and (20b), polynomials R,! ( x )  and D,f (x) 
are solutions of (14). Uniqueness follows from the fact that 
there is only one solution t o  (8a) under the conditions of 
(8b). Therefore, A ( x )  = R,, ( x ) / A  and X(x)  = 0,. ( x ) / A  are the 
unique solutions of (sa, b), where A is chosen t o  ensure that 
A, = 1. 

for s = s', where N,;'(x) is the inverse of the 2 X 2 matrix 
N,t(x) in (loa). The substitution (1Oc) into (17) yields To obtain ~ ( x ) ,  one replaces the recursive equation in (1 1) 

by 

with the changed initial conditions: T, ( x )  = A ( x )  and T-, ( x ) =  0. 
To obtain the final errata locator polynomial, first, let s = 1. 
Then (21) becomes by (1 l ) ,  From (18), one obtains 

For  s = 2,  (21) becomes by (1 l ) ,  

etc. Here, in general, one has T,(x) = D,(x) A(x) with T~ ( x )  = 
A ( x )  and T - ~  ( x )  = 0. 
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The results proved above imply the following now evident 
theorem: 

Theorem 2: Let T(x) in (7) be the Forney syndrome poly- 
nomial of a t-error and v-erasure correcting RS code under 
the condition v t 2 t  < d - 1, where d - 1 is either an even or 
an odd integer. Consider the two polynomials Xd-l and T(x) 
in (7). The Euclidean algorithm for polynomials on GF(2m) 
can be used to develop two finite sequences R,(x) and T,(x) 

from the following two recursive formulas: 

and 

for s = 1, 2, . . . , where the initial conditions are T, (x) = A(x), 
T - ~  (x) = 0, R-, (x) = & - I ,  and R, (x) = T(x).  Here Q,-l (x) is 
obtained as the principal part of Rs-2 (X)/R~--~ (x) .  The recur- 
sion in (22a) and (22b) for R,(t) and T,(x) terminates when 
deg {R,(x)} Q L(d t v - 3)/2J for the first time for some 
value s = s'. Let 

and 

Also in (23) A = T,~(O) is a field element in GF(2") which is 
chosen so that 7, = 1. Then A(x) and ~ ( x )  in (23) are the 
unique solution of A (x) E T(x) ~ ( x )  mod Xd-', where both 
inequalities, deg { T ( x ) }  < L d  + v - 1)/2J and deg { A  (x)} < 
L(d t v - 3)/4, are satisfied. 

The proof of Theorem 2 demonstrates that the algorithm 
presented by Eastman' is correct. 

The roots of ~ ( x )  are the inverse locations of the c errors 
and v erasures. These roots are most efficiently found by the 
Chien search procedure. By (4d) it is shown readily that the 
errata values are 

where ~ ' ( X i l )  is the derivative with respect to x of ~ ( x ) ,  
evaluated at x = X i ' .  

The overall time-domain decoding of RS codes for correct- 
ing errors and erasures, using Theorem 2 and the Euclidean 
algorithm, is summarized in the following steps: 

(1) Compute the transform of the received vector m-tuple 
over GF(2m) frcm Eq. (2). Next calculate the erasure 
locator polynomial A(x) from Eq. (4a) and define 
deg {A@)} = v. 

(2) Compute the Forney syndrome polynomial from 
T(x)  in (7). 

(3) To determine the errata locator polynomial ~ ( x )  and 
errata evaluator polynomial A(x), where 0 Q v < 
d - 1, apply the Euclidean algorithm to xd-l and 
T ( x )  as given by (7). The initial values of the Euclidean 
algorithm are T, (x) = A(x), T - ~  (x) = 0,  R-l ( x )  = Xd-' 
and R, (x) = T(x). For v = d - 1 set T(X) = A(x) and 
A(x) = T(x). 

(4) Compute the errata values from (24). 

To illustrate the time domain decoding procedure for cor- 
recting errors and erasures, an elementary example of an RS 
code over GF(24) is now presented. The representation of the 
field GFQ4 ) generated by the primitive irreducible polyno- 
mial G(x) = x4 + x t 1 is given in Table A-1 in the appendix. 

Example I: Consider a (15,9) RS code over GF(24) with 
minimum distance d = 7. In this code, v erasures and t errors 
under the condition 2 t  t v Q d - 1 can be corrected. In order 
to simplify this example, let y = a and b = 1. Thus, the genera- 
tor polynomial of such a (15,9) RS code is defined by 

t a4x3 t a6x2 + a9x t a6 

Assume the message symbols are 

The encoded codeword. which is a multiple of g(x) ,  is 

t a2x3 t a6x2 t a12x t a8 
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Written as a vector, the codeword is 

c = (,~0,.~2,.8,.5,a6,a~4,Q,13,a~',a9,aO,a, 

Assume the erasure vector is 

u = (0 ,0 ,0 ,0 ,0 ,0 ,0 ,a2 ,0 ,0 ,0 ,0 ,0 ,0 ,0 )  

and the error vector is 

e = ( o , o , o , o , ~ ~ ~ , o , o , o , o , o , o , ~ ~ , o , o , o )  

Then the errata vector is 

N u = u t e  = ( o , o , o , o , ~ ~ ~ , o , o , ~ ~ , o , o , o , ~ ~ , o , o , o )  

Assume the received vector is 

r = c t il= (a10,a12,a8,(115,a,a14,a13,a9,a9,a0,a,  

In (25 ) ,  the coefficients of T(x), To = a 0 ,  T, = a s ,  T, = a 1 2 ,  
T3 = a, T, = a9, and T, = a8 are the Forney syndromes. 

The Euclidean algorithm is applied next to polynomials 
xd-l and T(x) in (7). By this means, polynomials ~ ( x )  and 
A(x) are determined by use of the Euclidean algorithm. This 
is accomplished by the recursive formulas (22a) and (22b) 
illustrated in Table 1, where initially R-, (x) = xd-l = x6  and 
R0(x)=T(x)=a8x5 +a9x4 +ax3 +a12x2 + a 5 x +  1.From 
Table 1, one observes that deg {RSt (x)} = deg {R ,  (x)} = 2 < 
L(d t Y - 3)/2J = 2. Thus, the computation terminates at this 
point for s' = 2, and 

R2(x) = a7x2 t a x  t a2 

and 

T2 (x) = a7x3 t a13x2 t a4x t a2 

By (23a) and (23b), one has 

T(X) = - 1 T2(X) = Q S X 3  t a l l x 2  + a z x +  1 

az 

The syndromes S, for r are 
and 

14 

for 1 < k < 6  

This yields S, = a o ,  Sz = aI3 ,S3  = a14,S4 = a l l ,  S5 = a ,  and 
S, = 0. Thus, the syndrome polynomial is 

s(xj = a0 t a 1 3 x t a 1 4 x 2  t a 1 ' x 3  t a x 4  +ox5  

The erasure locator polynomial is A(x) = (1 t a7x). In this 
example, the maximum erasure correcting capability is 

p - 1 - q 2 j  = k 7  - 1 - 1)/2] = 2 

By (7), one obtains the Forney syndrome polynomial as 

T(x)=A(x)S(x) (1 t a7x)(1 t a13x t a14x2 t a1'x3 

t ax4 t Ox5) modx6  

1 A(x) = - R,(x) = a5x2 t a 1 4 x t  1 
a2 

By use of a Chien search, the roots of T(X) constitute the set 
{a-7, a-3, a-1o}.  The derivative with respect to x of ~ ( x )  
in (26) is ~ ' ( x )  = asx2 t a z .  Thus, by (24) and (27), the 
errata values are 

and 
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111. An Improved Architecture for the Time 
Domain Decoder 

An improved VLSI architecture of a pipeline decoder for 
correcting both errors and erasures of a ( 2 5 5 , 2 2 3 )  RS decoder 
for codes over G F ( 2 8 )  is presented in Fig. 2 .  For this example, 
assume y = a and b = 1 12. 

In Fig. 2 ,  the block diagram can be separated into two parts 
as indicated by the dashed line. The functional units contained 
in the first part of the decoder architectures in Fig. 2 are 
shown as follows: (1) the syndrome computation unit, ( 2 )  the 
power calculation unit, (3)  the power expansion unit, (4) the 
polynomial expansion unit, ( 5 )  the L d  + v - 3)/2J generator, 
and (6)  the delay unit. 

The syndrome computation unit accepts received messages 
and computes their syndromes. There are 32 syndrome sub- 
cells in a ( 2 5 5 , 2 2 3 )  RS decoder. The computed syndrome 
polynomial is labelled as S(x) in Fig. 2 .  The coefficients of 
S(x) are fed in parallel to the polynomial expansion unit in 
order to compute the Forney syndromes. 

The power calculation unit converts the received 1’s and 0’s 
into a sequence of ak’s and O’s, where a is a primitive element 
of the finite field over which the RS code is defined. These 
received 1’s and 0’s indicate the occurrence or nonoccurrence, 
respectively, of an erasure at a specific location. Since the 
maximum erasure correcting capability of a ( 2 5 5 , 2 2 3 )  RS 
decoder is 32,  only 32 symbol latches are Reeded to store all 
correctable erasure locations. 

A detection circuit for detecting the occurrence of erasures 
is included in the power calculation unit. If an erasure occurs 
at the k th  location, a symbol ak is calculated by the power 
calculation unit and latched. The sequence of ak’s is fed to the 
polynomial expansion circuit, to the power expansion unit and 
to the L d  + v - 3)/2] generator. 

The power expansion unit converts the ak’s into an erasure 
locator polynomial A(x).  Therefore, the polynomial A(x) has 
ak’s as its roots. The erasure locator polynomial A(x) is fed to 

the modified GCD unit as one of the initial conditions for the 
modified GCD unit. 

A generator is used to compute L(d + Y - 3 ) / g .  The output 
is sent to the modified GCD unit and used as a stop indicator 
for the Euclidean algorithm. The polynomial expansion unit is 
used to compute the required Forney syndromes. 

In Fig. 2 ,  the erasure locator polynomial A(x), together 
with the Forney syndrome polynomial T(x) ,  is the input to 
the modified GCD unit. The outputs of the modified GCD 
unit are the errata locator polynomial, ~ ( x ) ,  and the errata 
evaluator polynomial, A (x). The error correcting capability 
of the code is computed by L(32 - v ) / 2 J .  

The second half of Fig. 2 is labelled as “11.” One of the 
outputs of the modified GCD unit is the errata locator poly- 
nomial T ( x ) .  This output is fed to a Chien search unit and to 
another unit for computing [ X b - l  ~’ (x) ]  -’ = [xll l  ~ ’ (x ) ]  - l ,  
where b = 112. The other output of the modified GCD is the 
errata evaluator polynomial A(x) .  This is fed to the polyno- 
mial evaluation unit to perform the evaluation of A (x). 

The [x l 1  ~ ‘ (x ) ]  -l unit computes one part of the errata 
magnitude. The product of the outputs from the polynomial 
evaluation unit and the [x l l 1  ~’(x)]  -I unit forms the errata 
magnitude. 

In Fig. 2 ,  the Chien search unit is used to search for both 
the error and erasure locations. The architecture of the Chien 
search unit is similar to that of a polynomial evaluation unit, 
except that there is a zero detector at the end in the Chien 
search unit. 

Compared with the previous design in Fig. 1 ,  one observes 
that this improved architecture does not require the polyno- 
mial multiplication unit, delay TI, delay 111, and the truncation 
circuit usually needed in Fig. 1 for computing the errata 
evaluator polynomial. Thus, this new decoding algorithm in 
Fig. 2 is simpler and more suitable for the VLSI implementation. 
Finally, a comparison of VLSI architecture for time and trans- 
form domain decoding of Reed-Solomon codes is shown in 
[71. 
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Appendix 

Table A-1. Representations of the elements of GF(24) generated by a4 -t a + 1 = 0 

a0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

a l4 

3 
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0 

0 

1 

0 

0 

1 

1 

0 

1 

0 

1 

1 

1 

1 

2 

0 

0 

1 

0 

0 

1 

1 

0 

1 

0 

1 

1 

1 

1 

0 

01 

0 

1 

0 

0 

1 

1 

0 

1 
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1 

1 
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0 
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0 
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